氮分子激光器 Blumlein 电路的研究

郭光灿 文公龄 张玉春

(中国科技大学物理系)

Investigation on Blumlein circuit of a molecular nitrogen laser

Guo Guangcan Wen Gongling Zang Yuchun (Department of Physics, China University of Science and Technology)

Abstract

General considerations for increasing the circuit efficiency and laser output power were analyzed. The segmented structure of Blumlein circuit and the results of corona preionization were studied; the effect of electrodes with unequal spacing on laser output in two directions were measured. The existence of "travelling-wave excitation" in the system are denied, and a new explanation for the experimental results are given.

一、提高 Blumlein 电路性能 的一般考虑

用在激光研制中的基本 Blumlein 电路 结构如图 1 所示。激光管中两个横向放电电 极分别与作为储能电容和脉冲形成线的电容 C₂和 C₁的高电压平板相连接,脉冲形成线 并联一个火花球隙开关 SG。工作时,高压

图 1 Blumlein 电路的基本结构 C1一脉冲形成线; C2一储能电容

电流电源同时对两个平板电容器充电,因为 管内两电极有着相同的电位,因此不会发生 气体放电。但当球隙开关击穿后,脉冲形成 线对地放电,使与之相连的电极上的电位,突 然降到地电位,于是两个电极之间便形成很 高的电位差,使管内气体击穿,产生一个高电 子温度的等离子体区,在合适的条件下,沿着 与放电垂直的管轴方向将有激光输出。

提高激光输出的一个关键问题是提高器件的能量转换效率,即放电电路输入到气体 等离子体中的电功率在激光形成过程中应尽 可能多地转换成相干光的光功率。图2是实 验上测得的放电过程中电极间的电压和电流 的波形,以及输入到气体中电功率和激光脉 冲的波形^[1]。

显然,为了提高电能转换成光能的效率, 收稿日期: 1979年3月5日。

必须尽量使更多的电功率在光脉冲形成之前 输入到放电等离子体中,即电功率波形应有 更快的上升速率,这就要求放电的电压和电 流脉冲应有更短的上升时间。

根据对 Blumlein 电路的等效电路分析, 影响电压波形上升速率的重要因素之一是球 隙开关的电感。开关电感越小,电压上升越 快,一般的球隙开关电感约为几十毫微享,相 应电压上升时间约为 25 毫微秒。特殊结构 的开关(例如充以几个大气压的氮气),可以 使开关电感减少,但是装置较为复杂。我们 采用一种简单结构(图 3),开关的两个电极 直接压在脉冲形成线的两个金属板上,无需 附加引线而且接触面积大,可使其电感减少。 开关的一个电极可调节,以改变工作电压,也 可以采用第三个电极外触发。

图 3 一种简单的球隙开关结构 1一高压电极, 2一脉冲形成线; 3一地电极

影响放电电流上升速率的主要因素是放电管的电感。因此必须尽量减少电极与平板

电容的连接线所附加的电感。一种简单的办 法是将电极直接压在电容金属板上。下面我 们还将看到预电离能显著地增大电流的上升。 速率,使输出大大地提高。

提高激光器输出功率的另一途径是增大 工作气压 P,亦即激活介质的密度。这在 CO₂激光器研究中已证实是行之有效的。但 理论和实验均表明,在激光器运转时存在一 个最佳的 *E/P* 值(*E* 为电极间的电场强度)。 因此欲提高工作气压,则要相应地增加工作 电压,这势必给激光器的绝缘和安全操作带 来困难。高气压放电的另一困难是放电的不 均匀性,即容易形成局部的弧光放电,使激光 输出显著下降。所以为进一步提高最佳工作 气压以增加激光器的输出,务必降低气体放 电中最佳 *E/P* 值,并保证在整个管内能获得 大体积的均匀辉光放电。我们的实验表明, 分段电极结构的 Blumlein 电路和电晕预电 离正是解决这两个问题的有效途径。

二、分段电极的 Blumlein 电路

放电的不均匀性即局部弧光放电将大大 降低激光输出功率,也会严重影响激光输出 的稳定性。当电极个别区域优先放电时,储能 电容中相当大的一部分电能将耗损于该处窄 小的放电通道之中,放电电流过大,从而形成 电弧, 而使其它区域的辉光放电电流明显减 小。 弧光放电中气体温度过高, 不利激发激 光上能级,因而电能转换成为激光能量的效 率显著降低。为在放电体积中获得均匀辉光 放电,我们将通常采用的条状电极分成若干 小段(图4)。两电极分别由68段组成,每段 电极长4毫米,相邻两段之间间隔为3毫米, 相应的储能电容和脉冲形成线的高电压平板 也分别分成68条,与接地的公共平板构成 68 对并联的电容。总的储能电容为1.70 毫 微法,脉冲形成线电容为1.80毫微法,腔长 半米,放电极极间距为10毫米,放电过程中

每个小电容所储存的电能仅能通过相应的电 极进行放电,这就限制着放电电流,使之不会 过大以至于从辉光放电过渡到弧光放电。

实验结果表明(图 5),这种结构的电路 有着以下特点: (1)放电最佳 *E/P* 值显著下 降。一般结构中 *E/P* 值~200 伏/厘米·托, 分段电极结构中 *E/P* 约为 130 伏/厘米·托。 (2)工作气压明显提高。一般结构最佳工作 气压为 30~40 托,在 90 托左右就无激光输 出,而该装置最佳气压为 60~70 托,工作气 压范围高达 160 托。(3)阈值工作电压降低。 当工作电压降到 3~4 千伏时仍有激光输出, 其光强足以使若丹明 6G 的 溶 液产生明显 的荧光。

三、电晕预电离的效果

获得均匀辉光放电的另一有效措施是预 电离,即在激光主电极放电之前,利用附加电 极预先放电,在管内形成一个均匀分布的低 能电子云,这些低能电子参予主电极的放电 过程,有利于改善辉光放电的均匀性。我们 采用一对尖劈形电极作为电晕预电离电极, 其极间距离比主电极(间距为10毫米)大20 ~30%(图6)。附加电极优先产生电晕放电 而提供了均匀分布的电子云。

图 6 电晕预电离结构

我们在不同的电压下,测量单方向输出 光强随工作气压变化的关系(图7),实验结 果发现,预电离后最佳工作的 *E*/*P* 值没有明 显的改变,但激光输出却大大增强。在相同 条件下有预电离时激光输出约为无预电离时 的 2~5 倍。

我们认为预电离之所以能如此显著地增加激光输出,其主要原因在于初始电子云除 了有利于形成均匀放电之外,还起着促使放 电电流更快速上升的作用。大家知道,气体 中电击穿形成的机理主要是电子雪崩即汤生 放电。由于电离碰撞的结果,雪崩中的电子 数目 N 随时间 t 指数增加^[23],

 $N_t = N(t_0) \exp[\alpha \nu_d (t - t_0)]$

式中, α 为第一汤生电离系数, νa 为电子的 漂移速度, to 为放电开始时刻, N(to)为放电 开始时管内的初始电子数目。由上式可知, 放电形成的速率正比于初始电离的数目。在 一般放电管中初始电子主要依靠自然界中剩 余电离提供,其电离度很低,而预电离提供相 当数量的低能电子,大大地提高了放电形成 的速率。如前所述,放电过程中能量转换效 率随着电流上升速率增快而提高。因此在预 电离时激光输出功率必然会有显著的增强。

四、不等间距的电极对 激光输出的影响

一般 № 激光器的结构中,两电极之间 有相同的间距,管子两端输出光强相同。 我 们研究了电极的不等间距对两端输出的影 响,如图 8 所示, *A* 端电极间距为7.5 毫米, *B* 端为 10 毫米。在不同电压、气压下测出两 端激光输出的相对强度,结果(表 1)表明, *A* 端的输出约为另一端的两倍。

一般资料将激光器两端输出不相同理解 为"行波激励"。在这里具体放电条件下就不 能用"行波激励"的概念来解释我们的实验结 果。事实上考虑到这种装置的开关电感的影 响,放电上升时间约为5毫微秒/米^[33],因此 光波传输过整个腔长后放电仍未熄灭,反向 光波仍有增益,故不能用"行波激励"的条件 来分析,否则B端的输出应当比A端强,而我 们的实验结果正好与此相反。我们用有机玻 璃制作激光管,因此很容易观察到放电的状

图 8 不等间距电极的结构示意图

表1 电极间距不等时两端激光输出的相对强度

电压(千伏)	10		8	
气压(托)	50	60	40	50
A端激光输出	110	120	60	55
B端激光输出	50	60	39	29 .

况。实验中很容易观察到在不等间距电极的 放电管中,辉光放电的强度是不均匀的,间距 越小的区域,辉光越强,即放电辉光强度在 *A* 端最强,沿着管轴向 *B* 端过渡,辉光逐渐减 弱,在 *B* 端最弱。这表明管子各处的放电电 流密度不相同,电极间隔小的区域,优先进行 放电,因而储能电容中有较多的电能输入到 该区域的放电等离子体中,电极间距越大,放 电越迟缓,所能利用到的储能电容中的电能 比例愈小,因而放电电流密度也越小。同时 电极间距越小,相应的电场强度越大,电子温 度越高。

我们知道,在等离子体中,放电电流密度 J与电子密度 n_e 有如下关系:

 $J = n_e \nu_d e$

其中, e 为电子电荷, va 为电子 漂移速 率。因此放电电流密度的不同也就是电子密 度不同。 N₂ 激光器的泵浦机理是电子 直接 将基态的 N₂ 激发到激发态上,其激发速率 *R* 为:

$R = n_e N_0 \overline{\sigma} \overline{V}$

式中, N_o 为氮分子基态粒子数密度, σ 为按

照速度平均的电子激发截面, **v** 为电子平均速度。

由于放电电流沿轴向分布是不均匀的, 电子所激发的 № 激发态粒子数也不相同, 因而反转粒子数密度亦即增益在 A 端最大, 沿管轴向 B 端逐渐减少。考察一下从 A 端 向 B 端传播的光波。由于单位体积单位时间 内受激辐射产生的光子数 W 为

$$W = \frac{IB}{C} N_{c}$$

式中 I 为光强, B 为爱因斯坦系数, C 为光速, N_o 为激光上能级粒子数。虽然 A 端 N_o 最大,但由于光强很弱,受激辐射几率显然很低。随着光向 B 端传播,光强逐渐增强,但 如前所说, N_o 也逐渐减少,在B 端光强最大,而 N_o 最小,因此从 A 向 B 传播而形成的激光比较弱,相反地,从 B 端向 A 端传播的光,其光强随着传播距离逐渐增强,而且 N_o 也逐渐增大,因此受激辐射几率在光传播 过程中越来越大,这就使该方向形成的激光 变得很强。

我们在激光管某端安置一镀铝的全反射

镜测量另端激光的输出,实验结果如表2所示。在这种情况下, A 端激光输出比 B 端大 约增强了30% 左右。此结果同样可用上述 的分析加以解释。当然若 A 端电极间距过 小,使得其 E/P 值过大,不利于激发激光上 能级,即 A 端的粒子数反转密度将会减少, 此时 A 端输出就不一定会比 B 端强。

-	6
-	-
AX	

电压(千伏)	10.7		
气压(托)	30	40	50
A端输出光强	65	98	80
B端输出光强	59	75	73

参考文献

- [1] H. E. B. Andersson et al.; Opt-Electr., 6, 225 (1974).
- [2] L. E. Kline et al.; Phys. Rev., A5, 794 (1972).
- [3] A. J. Schwab et al.; IEEE J. Quant. Electr., QE-12, No. 3, 183 (1976).

(上接第32页)

两种情况的最佳透过率都是 30%。最佳透过 率较高是由于染料分子 S₁~S₀ 跃迁光增益 系数大(10³ 厘米⁻¹)的缘故。

(3) 输出能量随预电离电流的变化

当储能 20 焦耳、输出反射镜透 过率为 26% 时,所测得的激光能量-预电离电流曲 线如图 6。我们发现预电离电流在 0.1~0.5 安培范围内变化时,激光输出能量随预电离 电流的增加作线性增长。其原因是预电离电 流的增加改善了氙灯放电的均匀性,因而提 高了氙灯光效,使激光输出能量提高。

